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Molecular conformation

Molecular conformation
is a spatial arrangement
of atoms in a molecule

Key characteristic of

a conformation is a potential
energy, which exact form
depends on a method
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Molecular conformation.
Bolzman Law

The log probability of a conformation is proportional
to the negative energy.
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Conformational energy
Handcrafted force fields (eg.: MMFF)

Etotal = Estretch + Ebend + Etorsion + Evaw + Eelec

EMMFF = 2 EB’-] + 2 EAijk + Z EBAl]k
+ZE00Pl]kl + ZETijkl + ZEUdWU + ZEQU

&2

Evaw and Eelec
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Conformational energy
Quantum force fields

HY = EY¥
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Density Functional Theory (DFT)

The highly nontrivial 3N-variable equation is simplified to 3-variable one
via Hohenberg-Kohn theorems.
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Density Functional Theory (DFT)

* First Hohenberg-Kohn theorem: The ground
state properties of a many-electron system
depend only on the electronic density n(x,y,z)

* Second Hohenberg-Kohn theorem: The
correct ground state density for a system is
the one that minimizes the total energy
through the functional E[n(x,y,z)]
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Neural force fields

There are many different neural network models to predict a conformational
energy, atomic forces, or a DFT Hamiltonian for a given molecular conformation.

Basic concept
In general, models include three main units:
1. Embedding block

2. Interaction Inputs W
3. Output

Embedding —— Interaction ——— Output




Deep learning for Quantum Chemistry @ NIRI g MSU.AI

Datasets

Starting with the SchNet vast majority of proposed models
are tested in a very simple settings.

QM9 MD17 ISO17
consists of =130k organic contains trajectories from contains short MD
molecules with up to 9 heavy molecular dynamics simulations  trajectories for 129

atoms of the types {C, O, N, F} of 8 molecules isomers of C7TO2H10
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nablaDFT dataset and benchmark

To avoid an overfitting in toy settings we published our own dataset
and benchmarked several recent models.

= contribution = contribution
MOSES Dataset VDFT Dataset Models Metrics
— Training
_— - « Conformer B —_— LR
~ \ 1 clusterization . A 1
—~— . BJE_?7X—D/def2-SVP X iy o — Isls‘ltformations SchNet Energy prediction
] : N 3 I — DimeNet++ —
N « Atomic & molecular 5 Test Hamiltonian
properties, energies - F tructures SchNOrb matrix prediction
« Hamiltonian and i
overlap matrices 1004 918 Test PhiSNet
molecules = F caffolds
1936 962 5340152
molecules conformations

github.com/AIRI-Institute/nablaDFT
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Machine Learning Framework

cheap need many models

‘ Direct ML prediction l

- expensive P cheap ‘I

DFT ——mM Calculation ——
g ) ) O
o Properties
‘ cheap [
ML DFT
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Graph Convolution Nets

Fr i B B,
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Message passing

Message passing is an algorithm for inference on
graphical models.

At every step of the message passing, every node
has a state, which updates during the process. Each
node send a message to all its neighbors computed
as function of the node and neighbor states.
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Graph convolutional
networks
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Message passing

Message passing is an algorithm for inference on
graphical models.

At every step of the message passing, every node
has a state, which updates during the process. Each
node send a message to all its neighbors computed
as function of the node and neighbor states.
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SchNet

SchNet is trained to predict a conformational energy together with atomic forces given
desired force field.

Key features X D, X D
— E(3) invariant Embedding e
— Intermolecular distances embedded with RBFs erqetien MLP
Interaction
— Atomic forces are computed in the form e steont
of an energy gradient — pe

n A\ (12 l
) ) pooling
L[(E).(E,P)] = |E-E| + Z ( 6n>
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v
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DimeNet++

DimeNet uses angular information during the message passing
in addition to pairwise distances. (https://arxiv.org/abs/2011.14115)
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SchNOrb

In addition to conformational energy prediction, SchNOrb model is trained to predict
DFT Hamiltonian matrix within a given basis set.

Key features X D R x! D,
Embedding
— E(3) invariant for energy only St x! b
. . . | ftensor
— Combined loss for energy and Hamiltonian SchNOrb
‘ ' atom-wise | | pair-wise |
— Atomic forces are computed in the form el MEE
Of an energy gradlent poc1|ing SchNOrb interaction
E‘ H Xl+1 Pl+1

2

v oF
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Geometry optimization

. H Equilibrinm J

Deorees of Freedom
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Molecular geometry optimization with NNs.

Based on our research of quantum properties of small molecules we develop a model for
molecular geometry optimization with the quality on par with traditional physical

simulators.

Energy model

/ !

St ‘-’_E’ St+1
ISP UL G U U §

=
-

% aof minimized anergy

=
M

# Active Leaming

[ 100000 200000 300000 400000 500000
Total ervwronment mteractions

= fijfj ke ®OHR ﬁ
' mHTennexKT



Deep learning for Quantum Chemistry @ NIl MSU.AI

ldea

Classical geometry optimization pipeline is an analog of the gradient descent algorithm

e N e

The idea is to replace the the gradient descent with Active learning or Reinforcement learning

AL >“5sf
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Conformation optimization as RL problem

States: s € R3*"atoms — gtoms’ 3D-coordinates.
Actions: a € R3*X"atoms — coordinates shifts.

Reward: r = —(Ey — E) - a||Fy — F||, so the agent’s goal is to minimize the energy and forces
difference. Energies and forces for the initial and final states are taken from physical simulators
or baseline models.

Transition function: P(s'|s,a) = 6(s + a)
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RL-agent architecture

We use one of molecular GNN as a backbone, and compute pairwise shifts in relative
coordinates, so the transition becomes SE(3)-equivariant.

Shifts are computed the following way:
1. At first we calculate the matrix of pairwise directions:

ri—r:
P € ]Rnatomsxnatoms, where Pi,j = m
i=rj

2. Afterwards the coefficients are predicted : .
Agpiee = KV}, where K, and V,, € R"-atomsxemb.size
3. Finally the shifts are calculated in the following way:
a~tanh (Normal(Ashift * P, 0)) * action_scale, during training

a~tanh(Ashift * P) * action_scale, during inference.

- . PoHO ﬁ
MHTEenneKT
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RL-agent architecture

n_atoms
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ku = Remb_szze
v, = ]Remb_size
o € R3
ku € Remb_szze
v, € Remb_size
o € R3

MolGNN
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Drug discovery

CLINICAL TRIALS RESEARCH &
MONITORING

PHASE Il

NUMBER OF VOLUNTEERS
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DL in drug discovery

» The traditional process of new drug discovery is notoriously long and expensive.

« Key goal is to construct new chemical structures possessing desired properties.

« Traditional virtual screening approach limited to the databases of already known drug
candidates and is not capable of designing novel drugs

» Most of existing DL approaches do not take into consideration the target protein
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D L p ro b l em Target Ligand Complex

Design a framework for generation of
i i i i docking
novel molecules with desired objectives. -

One possible objective is Docking score,
which is an approximate prediction of
the binding affinity.

docking
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Theory and Algorithms

Molecule Fragments
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Theory and Algorithms

Step 1
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